a2 United States Patent

Chen et al.

US009122676B2

(10) Patent No.: US 9,122,676 B2
(45) Date of Patent: Sep. 1, 2015

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

LICENSE RECONCILIATION WITH
MULTIPLE LICENSE TYPES AND
RESTRICTIONS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Han Chen, White Plains, NY (US); Hui
Lei, Scarsdale, NY (US); Liangzhao
Zeng, Mohegan Lake, NY (US); Zhe
Zhang, Elmsford, NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 42 days.

Appl. No.: 13/650,704

Filed: Oct. 12,2012

Prior Publication Data

US 2014/0108404 A1 Apr. 17, 2014

Related U.S. Application Data

Continuation of application No. 13/650,542, filed on
Oct. 12, 2012.

Int. Cl1.

GO6F 17/30 (2006.01)

GO6F 21/10 (2013.01)

U.S. CL

CPC GO6F 17/30 (2013.01); GO6F 21/105

(2013.01); GO6F 17/30289 (2013.01)

Field of Classification Search
CPC GO6F 17/3071; GO6F 17/30864; GOGF
17/30598; GOGF 21/10; GO6F 21/31; GO6F

0
)

ROW R, TYPE T =
BEST_RED_CELL(

RELEASE THE LICENSE
CAPACITY ALLOCATED T0 R
AND DEMOTE RED CELL [RT}

8/61; GOGF 17/30289; GOGF 17/30303; GOGF
21/105; GO6Q 20/382; GO6Q 20/3674;
GO06Q 10/00; HO4L 29/08981; G11B 20/00086
USPC ..ccvvvveiecenee 707/737, 719, 804; 705/36, 50,
717/176, 139, 136, 140, 146, 153,
726/31, 28, 26, 29, 30

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

804,164 A 11/1905 Orcutt
6,056,786 A 5/2000 Rivera et al.
7,171,662 Bl 1/2007 Misra et al.
8,856,757 B2* 10/2014 Leietal.ccooverrnnn. 717/139

8,856,758 B2* 10/2014 Leietal. 717/139
2001/0013024 Al* 82001 Takahashietal. ... 705/59
2003/0055749 Al* 3/2003 Carmodyetal. 705/28
2008/0028218 Al* 1/2008 Simon 713/170
2008/0133324 Al* 6/2008 Jacksonetal. 705/10
2008/0148253 Al* 6/2008 Badweetal. 717/174

(Continued)

Primary Examiner — Jean M Corrielus
(74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP

(57) ABSTRACT

Techniques for license reconciliation with multiple license
types and restrictions includes grouping a collection of mul-
tiple software installation instances, a collection of multiple
hardware devices and a collection of multiple software
licenses into multiple clusters, generating a reconciliation
matrix for each cluster, wherein each row in the reconciliation
matrix represents a software installation instance or a hard-
ware device, each column in the reconciliation matrix repre-
sents a license type and/or an individual license, and each cell
in the reconciliation matrix represents a license requirement
and applicability of each software installation instance or
hardware device, solving each reconciliation matrix, and gen-
erating a license reconciliation plan based on the solved rec-
onciliation matrices.

19 Claims, 3 Drawing Sheets

ALLOCATE CAPACITY OF
C T0 R AND UPDATE
AYAILABLE SUPPLY INFO

$ALL DESCENDANT ROWS OF R}
— COVERED

US 9,122,676 B2

Page 2

(56) References Cited 2011/0113493 ALl* 52011 Mooreceoevvvvvecene. 726/30
2011/0154330 Al* 6/2011 Axnixetal. 718/1
U.S. PATENT DOCUMENTS 2012/0030072 Al* 2/2012 Boudreau et al. .. 705/30
2012/0130911 Al* 5/2012 Maclellan et al. 705/310
2009/0158438 Al* 6/2009 Pichetti etal. .ooovvvvevevininn. 726/26 2012/0204270 Al* 8/2012 Paulino etal. 726/28
20090228984 AL 9/2009 Stein 2013007418 AL+ 32013 Bowdrens tal - 12616

2009/0249494 Al* 10/2009 Disciascio etal. 726/31 Lo

2010/0250730 Al* 9/2010 Menzies etal. 709/224 * cited by examiner

U.S. Patent

Sep. 1, 2015 Sheet 1 of 3

FIG. 1

LICENSE
CLUSTERING
MODULE

RECONCILIATION
MATRIX GENERATOR
MODULE

y
RECONCILIATION
MATRIX POPULATING
MODULE

-~ 106

US 9,122,676 B2

U.S. Patent Sep. 1, 2015 Sheet 2 of 3 US 9,122,676 B2

START
202

ROW R, TYPE T =
BEST_RED_CELL()

FIG. 2

204

BEST RED
CELL FOUND?

NO < STOP/NOT)
cowpLiant) 208

YES 208
COLUMN C =
NEXT_GREEN_OR_YELLOW_CELL =
(RT)

204
ALLOCATE CAPACITY OF
C T0 R AND UPDATE
AVAILABLE SUPPLY INFO

212

RELEASE THE LICENSE
CAPACITY ALLOCATED TO R

AND DEMOTE RED CELL [R.T] w8
| fALL GREEN CELLS IN C}
—= WHITE

220

R FULLY
COVERED?

{ALL DESCENDANT ROWS OF R}
— COVERED

_________ |

294 J_; RELEASE LICENSES ALLOCATED i

222 -

9

228

U.S. Patent

FIG. 3

GROUP A COLLECTION OF MULTIPLE SOFTWARE INSTALLATION

Sep. 1, 2015 Sheet 3 of 3 US 9,122,676 B2

INSTANCES, A COLLECTION OF MULTIPLE HARDWARE DEVICES AND A |~ 302

COLLECTION OF MULTIPLE SOFTWARE LICENSES INTO MULTIPLE CLUSTERS

!

GENERATE A RECONCILIATION MATRIX FOR EACH CLUSTER, WHEREIN
EACH ROW IN THE RECONCILIATION MATRIX REPRESENTS A SOFTWARE
INSTALLATION INSTANCE OR A HARDWARE DEVICE, EACH COLUMN IN

THE RECONCILIATION MATRIX REPRESENTS A LICENSE TYPE AND/OR AN |~ 304

INDIVIDUAL LICENSE, AND EACH CELL IN THE RECONCILIATION MATRIX
REPRESENTS A LICENSE REQUIREMENT AND APPLICABILITY OF EACH
SOFTWARE INSTALLATION INSTANCE OR HARDWARE DEVICE

!

SOLVE EACH RECONCILIATION MATRIX -~ 306

i

GENERATE A LICENSE RECONCILIATION PLAN

-~ 308

BASED ON THE SOLVED RECONCILIATION MATRICES
FIG. 4
4
414

/ T0/FROM

402 PROCESSOR | 410 | NETWORK L/F |<d= COMPUTER

{ NETWORK

404 MEMORY MEDIA I/F {=+— MEDIA

SR \ 416 \ 18
406 DISPLAY |
fae s o e s o o0 e o -t
408 KEYBOARD |

US 9,122,676 B2

1
LICENSE RECONCILIATION WITH
MULTIPLE LICENSE TYPES AND
RESTRICTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/650,542, filed Oct. 12, 2012, and incorpo-
rated by reference herein.

FIELD OF THE INVENTION

Embodiments of the invention generally relate to informa-
tion technology, and, more particularly, to license reconcili-
ation technology.

BACKGROUND

Challenges exist within the area of license reconciliation.
By way of example, consider the following common sce-
nario. At the beginning of abilling cycle, a number of licenses
are purchased. During the billing cycle, a number of products
(such as software products) are installed and used. Subse-
quently, at the end of the billing cycle, a license reconciliation
calculation is carried out to determine the entitlement of the
licenses to the products and examine whether the current
usage of the software products are fully entitled by the pur-
chased licenses.

However, reconciliation logic used in existing approaches
incurs heavy manual efforts and can present accuracy chal-
lenges. For instance, existing approaches include applying
usable licenses to deployed software installations without
optimizing the mix of license types and licenses within a type.
This can lead to inaccurate reconciliation, which in turn
causes false negatives and potentially increases licensing
costs. On the other hand, in existing approaches that explore
all possible license combinations, the reconciliation time will
be prohibitively high.

Accordingly, a need exists to enable selection from mul-
tiple applicable licenses, considering license types and
restrictions.

SUMMARY

In one aspect of the present invention, techniques for
license reconciliation with multiple license types and restric-
tions are provided. An exemplary computer-implemented
method for license reconciliation can include steps of group-
ing a collection of multiple software installation instances, a
collection of multiple hardware devices and a collection of
multiple software licenses into multiple clusters, generating a
reconciliation matrix for each cluster, wherein each row in the
reconciliation matrix represents a software installation
instance or a hardware device, each column in the reconcili-
ation matrix represents a license type and/or an individual
license, and each cell in the reconciliation matrix represents a
license requirement and applicability of each software instal-
lation instance or hardware device, solving each reconcilia-
tion matrix, and generating a license reconciliation plan based
on the solved reconciliation matrices.

Another aspect of the invention or elements thereof can be
implemented in the form of an article of manufacture tangibly
embodying computer readable instructions which, when
implemented, cause a computer to carry out a plurality of
method steps, as described herein. Furthermore, another
aspect of the invention or elements thereof can be imple-

10

30

35

40

45

2

mented in the form of an apparatus including a memory and at
least one processor that is coupled to the memory and opera-
tive to perform noted method steps. Yet further, another aspect
of the invention or elements thereof can be implemented in
the form of means for carrying out the method steps described
herein, or elements thereof; the means can include hardware
module(s) or a combination of hardware and software mod-
ules, wherein the software modules are stored in a tangible
computer-readable storage medium (or multiple such media).

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is ablock diagram illustrating example architecture,
according to an aspect of the invention;

FIG. 2 is a flow diagram illustrating reconciliation tech-
niques, according to an embodiment of the present invention;

FIG. 3 is a flow diagram illustrating techniques for license
reconciliation, according to an embodiment of the invention;
and

FIG. 4 is a system diagram of an exemplary computer
system on which at least one embodiment of the invention can
be implemented.

DETAILED DESCRIPTION

As described herein, an aspect of the present invention
includes intelligent license reconciliation with multiple
license types and restrictions. At least one embodiment of the
invention includes identifying a most cost-effective license
entitlement plan from various possible plans. As detailed
herein, such embodiments can include the use of combinato-
rial optimization techniques. As used herein, a license entitle-
ment refers to the action of using a license on a software
installation or a computing device running a software prod-
uct.

At least one embodiment of the invention includes reduc-
ing the problem size by clustering licenses and products (such
as software products) into groups, where each group is an
independent problem. Additionally, a matrix can be created
for each group, wherein such a matrix is a unified data rep-
resentation marking the solution space. Further, at least one
embodiment of the invention includes solving the matrix, for
example, using algorithms inspired by heuristics for the gen-
eralized assignment problem (GAP) in combinatorial optimi-
zation. Also, each individual matrix for each group is solved,
and ultimately, one solution is selected for each group.

FIG.1is ablock diagram illustrating example architecture,
according to an aspect of the invention. By way of illustration,
FIG. 1 depicts a license clustering module 102, a reconcilia-
tion matrix generator module 104 and a reconciliation matrix
populating module 106. The license clustering module 102
groups all licenses and software products into clusters such
that each cluster represents an independent reconciliation
problem. This reduces the overall computational complexity.
The reconciliation matrix generator module 104 generates an
initial reconciliation matrix. In at least one embodiment of the
invention, each row in the matrix represents a software prod-
uct container, which is the basic unit of any entitlement deci-
sions. Additionally, each column in the matrix is either a
license type or an individual license.

For purposes of illustration, example embodiments
described herein include example identifiers for the matrix

US 9,122,676 B2

3

cells. Accordingly, as used herein, “red” cells denote the
amount of license demands, “brown” cells denote available
license supplies, “green” cells denote valid entitlements, and
“yellow” cells denote soft restrictions.

As further depicted in FIG. 1, via the actions of the license
clustering module 102 and reconciliation matrix generator
module 104, the solution space of the combinatorial optimi-
zation problem is marked. In at least one example embodi-
ment of the invention, the optimization problem can be seen
as a special form of the generalized assignment problem
(GAP). Accordingly, the reconciliation matrix populating
module 106 solves each reconciliation matrix. By way of
example, FI1G. 2 depicts how each matrix is solved. Addition-
ally, in at least one embodiment of the invention, three types
of'information are used to populate each matrix: 1) the avail-
able capacity, the type, and the constraints of each license; 2)
the configurations (for example, number of processors) of
each computing device; and 3) the information about what
software products are installed on what computing devices,
and what devices run on what other devices (for example, a
virtual machine runs on a physical machine).

Further, in at least one embodiment of the invention, the
most cost-effective entitlement is selected until the entire
software inventory has been covered, or all licenses are used.
Accordingly, for each cluster, a solution is derived.

FIG. 2 is a flow diagram illustrating reconciliation tech-
niques, according to an embodiment of the present invention.
As illustrated in FIG. 2, a function included in an example
embodiment of the invention includes determining the most
advantageous (for example, the most cost-effective) “red”
cell (steps 202 and 204). (Also, if the most advantageous
“red” cell is not found, the process stops (a determination of
non-compliance) at step 206.) As noted above, “red” cells
denote the amount of license demands of a software or hard-
ware asset in a particular license type. Accordingly, such a
function (best_red_cell()) includes ranking all “red” cells
based on performance/price ratio. As used herein, perfor-
mance indicates the number of covered instances, and price is
the relative quantity of consumed licenses (for example, the
percentage of licenses consumed from the available capac-
ity). By way of example, if there are 500 units of Processor
Value Unit (PVU) available, and the row consumes 50 units,
then Price=10% (0.1).

As also noted in FIG. 2, another function included in an
example embodiment of the invention includes determining
the next “green” or “yellow” cell (step 208). Namely, for a
given red cell, there can be multiple green and yellow cells. To
maximize the chance of license compliance, the green and
yellow cells are ordered based on their license constraints.
“Next” in this context refers to the first usable (with remain-
ing capacity) green or yellow cell in the ranked list. As noted
above, “green” cells denote valid entitlements, and “yellow”
cells denote soft restrictions.

Accordingly, such a function (next_green_or_yellow_
cell()) includes maximizing the chance that the “green” cells
have enough capacity to cover remaining rows in the matrix.
As used herein, cover refers to the license capacity being
greater than or equal to the license requirement of the soft-
ware or hardware asset. Therefore, when applying the license
to the software/hardware asset, the asset is fully entitled. This
can be accomplished by ranking all licenses within a license
type from most specific to most general. In this context,
specific indicates that the license has more constraints, and
general indicates that the license has fewer constraints.

Further, in at least one embodiment of the invention, met-
rics can be considered such as location, product version,
software bundles, etc. Accordingly, at least one embodiment

10

15

20

25

30

35

40

45

50

55

60

65

4

of'the invention includes ranking all licenses by the number of
software installations they can cover after the constraints are
applied. Constraints include location, version, bundles, etc.

Accordingly, as further depicted in FIG. 2, if the function
(Column C=next_green_or_yellow_cell(R,T)) is null (step
210), the license capacity allocated to row in question (R) is
released and the red cell in question ([R, T]) is demoted (step
212). If the function is not null, step 214 includes allocating
the capacity of column C to row R and updating available
supply information. If column C is empty (step 216), all
“green” cells in C are denoted white (step 218) and the pro-
cess continues to step 220. Similarly, the column C is not
empty, the process continues to step 220 to determine whether
row R is fully covered. If row R is not fully covered, the
process returns to step 208. If row R is fully covered, step 222
indicates that all descendant rows of R are denoted as cov-
ered.

Step 224 includes releasing licenses allocated to those
descendant rows, while step 226 includes updating the con-
tainment list. Step 228 includes determining whether there
are additional rows for analysis. If yes, the process returns to
step 202. If no, the process stops (a determination of compli-
ance) at step 230.

FIG. 3 is a flow diagram illustrating techniques for license
reconciliation, according to an embodiment of the present
invention. Step 302 includes grouping a collection of multiple
software installation instances, a collection of multiple hard-
ware devices and a collection of multiple software licenses
into multiple clusters. The collection of multiple software
licenses can include multiple capacity types (PVU, resource
value unit (RVU), SERVER, etc.) and multiple restrictions
(version, geographical, etc.).

Step 304 includes generating a reconciliation matrix for
each cluster, wherein each row in the reconciliation matrix
represents a software installation instance or a hardware
device, each column in the reconciliation matrix represents a
license type and/or an individual license, and each cell in the
reconciliation matrix represents a license requirement and
applicability of each software installation instance or hard-
ware device. Each reconciliation matrix can include multiple
cell types. For example, a reconciliation matrix can include a
cell type representing an amount of license demand, a cell
type representing available license supplies, a cell type rep-
resenting a valid entitlement, and/or a cell type representing a
restriction.

Step 306 includes solving each reconciliation matrix. The
solving step can include selecting a license entitlement with
smallest relative license consumption for each covered soft-
ware installation instance and strictest set of license con-
straints.

Step 308 includes generating a license reconciliation plan
based on the solved reconciliation matrices. Generating a
license reconciliation plan can include ranking each of the
solved reconciliation matrices based on a performance/price
ratio, wherein performance indicates a number of covered
software installation instances from the collection of multiple
software installation instances, and price indicates a relative
quantity of consumed licenses from the collection of multiple
software licenses. Additionally, generating a license recon-
ciliation plan can include ranking all licenses within each
license type based on level of specificity. Analysis can also be
performed with respect to a metric based on location, version,
etc. By way of example, within a license type, the licenses
with more restrictions (for example, can only be used on
software version 10, rather than all versions), will be used
first.

US 9,122,676 B2

5

Further, generating a reconciliation matrix for each cluster
can include encoding a license requirement of each software
installation instance and/or set of software installation
instances in a canonical data format. Additionally, at least one
embodiment of the invention can include encoding available
capacity information for each license in a canonical data
format, encoding identification of each member of each set of
software installation instances in a canonical data format,
and/or encoding identification of each license belonging to
each of one or more license types in a canonical data format.

The techniques depicted in FIG. 3 can additionally include
assigning a license type to each software installation instance
or hardware device. Further, at least one embodiment of the
invention includes allocating an amount of license capacity
from a software license within an assigned license type. Also,
as described herein, generating a license reconciliation plan
can include ranking each license type based on a perfor-
mance/price ratio.

The techniques depicted in FIG. 3 can also, as described
herein, include providing a system, wherein the system
includes distinct software modules, each of the distinct soft-
ware modules being embodied on a tangible computer-read-
able recordable storage to medium. All of the modules (or any
subset thereof) can be on the same medium, or each can be on
a different medium, for example. The modules can include
any or all of the components shown in the figures and/or
described herein. In an aspect of the invention, the modules
can run, for example, on a hardware processor. The method
steps can then be carried out using the distinct software mod-
ules of the system, as described above, executing on a hard-
ware processor. Further, a computer program product can
include a tangible computer-readable recordable storage
medium with code adapted to be executed to carry out at least
one method step described herein, including the provision of
the system with the distinct software modules.

Additionally, the techniques depicted in FIG. 3 can be
implemented via a computer program product that can
include computer useable program code that is stored in a
computer readable storage medium in a data processing sys-
tem, and wherein the computer useable program code was
downloaded over a network from a remote data processing
system. Also, in an aspect of the invention, the computer
program product can include computer useable program code
that is stored in a computer readable storage medium in a
server data processing system, and wherein the computer
useable program code is downloaded over a network to a
remote data processing system for use in a computer readable
storage medium with the remote system.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of'a computer program product embodied in a
computer readable medium having computer readable pro-
gram code embodied thereon.

An aspect of the invention or elements thereof can be
implemented in the form of an apparatus including a memory
and at least one processor that is coupled to the memory and
operative to perform exemplary method steps.

Additionally, an aspect of the present invention can make
use of software running on a general purpose computer or
workstation. With reference to FIG. 4, such an implementa-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion might employ, for example, a processor 402, a memory
404, and an input/output interface formed, for example, by a
display 406 and a keyboard 408. The term “processor” as used
herein is intended to include any processing device, such as,
for example, one that includes a CPU (central processing
unit) and/or other forms of processing circuitry. Further, the
term “processor” may refer to more than one individual pro-
cessor. The term “memory” is intended to include memory
associated with a processor or CPU, such as, for example,
RAM (random access memory), ROM (read only memory), a
fixed memory device (for example, hard drive), a removable
memory device (for example, diskette), a flash memory and
the like. In addition, the phrase “input/output interface” as
used herein, is intended to include, for example, a mechanism
for inputting data to the processing unit (for example, mouse),
and a mechanism for providing results associated with the
processing unit (for example, printer). The processor 402,
memory 404, and input/output interface such as display 406
and keyboard 408 can be interconnected, for example, via bus
410 as part of a data processing unit 412. Suitable intercon-
nections, for example via bus 410, can also be provided to a
network interface 414, such as a network card, which can be
provided to interface with a computer network, and to a media
interface 416, such as a diskette or CD-ROM drive, which can
be provided to interface with media 418.

Accordingly, computer software including instructions or
code for performing the methodologies of the invention, as
described herein, may be stored in associated memory
devices (for example, ROM, fixed or removable memory)
and, when ready to be utilized, loaded in part or in whole (for
example, into RAM) and implemented by a CPU. Such soft-
ware could include, but is not limited to, firmware, resident
software, microcode, and the like.

A data processing system suitable for storing and/or
executing program code will include at least one processor
402 coupled directly or indirectly to memory elements 404
through a system bus 410. The memory elements can include
local memory employed during actual implementation of the
program code, bulk storage, and cache memories which pro-
vide temporary storage of at least some program code in order
to reduce the number of times code must be retrieved from
bulk storage during implementation.

Input/output or /O devices (including but not limited to
keyboards 408, displays 406, pointing devices, and the like)
can be coupled to the system either directly (such as via bus
410) or through intervening I/O controllers (omitted for clar-
ity).

Network adapters such as network interface 414 may also
be coupled to the system to enable the data processing system
to become coupled to other data processing systems or remote
printers or storage devices through intervening private or
public networks. Modems, cable modem and Ethernet cards
are just a few of the currently available types of network
adapters.

As used herein, including the claims, a “server” includes a
physical data processing system (for example, system 412 as
shown in FIG. 4) running a server program. It will be under-
stood that such a physical server may or may not include a
display and keyboard.

As noted, aspects of the present invention may take the
form of a computer program product embodied in a computer
readable medium having computer readable program code
embodied thereon. Also, any combination of computer read-
able media may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-

US 9,122,676 B2

7

tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using an appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of at least one programming language, including an
object oriented programming language such as Java, Small-
talk, C++ or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions

10

15

20

25

30

35

40

45

50

55

60

65

8

stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. Accordingly, an aspect of the invention
includes an article of manufacture tangibly embodying com-
puter readable instructions which, when implemented, cause
a computer to carry out a plurality of method steps as
described herein.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, component, segment, or
portion of code, which comprises at least one executable
instruction for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

It should be noted that any of the methods described herein
can include an additional step of providing a system compris-
ing distinct software modules embodied on a computer read-
able storage medium; the modules can include, for example,
any or all of the components detailed herein. The method
steps can then be carried out using the distinct software mod-
ules and/or sub-modules of the system, as described above,
executing on a hardware processor 402. Further, a computer
program product can include a computer-readable storage
medium with code adapted to be implemented to carry out at
least one method step described herein, including the provi-
sion of the system with the distinct software modules.

In any case, it should be understood that the components
illustrated herein may be implemented in various forms of
hardware, software, or combinations thereof, for example,
application specific integrated circuit(s) (ASICS), functional
circuitry, an appropriately programmed general purpose digi-
tal computer with associated memory, and the like. Given the
teachings of the invention provided herein, one of ordinary
skill in the related art will be able to contemplate other imple-
mentations of the components of the invention.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,”“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/

US 9,122,676 B2

9

or components, but do not preclude the presence or addition
of another feature, integer, step, operation, element, compo-
nent, and/or group thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed.

At least one aspect of the present invention may provide a
beneficial effect such as, for example, providing an intelligent
license reconciliation with multiple license types and restric-
tions that is applicable with multiple data models.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:

1. An article of manufacture comprising a computer read-
able storage medium having computer readable instructions
tangibly embodied thereon which, when implemented, cause
a computer to carry out a plurality of method steps compris-
ing:

grouping a collection of multiple software installation

instances, a collection of multiple hardware devices and
a collection of multiple software licenses into multiple
clusters;

generating a reconciliation matrix for each cluster, wherein

each row in the reconciliation matrix represents a soft-
ware installation instance or a hardware device, each
column in the reconciliation matrix represents a license
type and/or an individual license, and each cell in the
reconciliation matrix represents a license requirement
and applicability of each software installation instance
or hardware device;

solving each reconciliation matrix, wherein said solving

comprises determining (i) a performance value for each
reconciliation matrix and (ii) a price value for each rec-
onciliation matrix, wherein said performance value indi-
cates a number of covered software installation
instances from the collection of multiple software instal-
lation instances, and wherein said price value indicates a
relative quantity of consumed licenses from the collec-
tion of multiple software licenses; and

generating a license reconciliation plan based on the solved

reconciliation matrices, wherein said generating the

license reconciliation plan comprises:

ranking each of the solved reconciliation matrices based
on a performance to price ratio, and wherein said
performance to price ratio is determined for each
solved reconciliation matrix based on said determined
(1) performance value and (ii) price value for each
reconciliation matrix; and

identifying the most cost-effective solved reconciliation
matrix, based on said ranking, as the license recon-
ciliation plan.

2. The article of manufacture of claim 1, wherein the col-
lection of multiple software licenses includes multiple capac-
ity types and multiple restrictions.

3. The article of manufacture of claim 1, wherein the
method steps comprise:

10

15

20

25

30

35

40

45

50

55

60

65

10

assigning a license type to each software installation

instance or hardware device.

4. The article of manufacture of claim 1, wherein the
method steps comprise:

allocating an amount of license capacity from a software

license within an assigned license type.

5. The article of manufacture of claim 3, wherein generat-
ing a license reconciliation plan comprises ranking each
license type based on a performance to price ratio.

6. The article of manufacture of claim 1, wherein the rec-
onciliation matrix for each cluster comprises multiple cell
types.

7. The article of manufacture of claim 6, wherein the mul-
tiple cell types comprise a cell type representing an amount of
license demand, a cell type representing available license
supplies, a cell type representing a valid entitlement, and a
cell type representing a restriction.

8. The article of manufacture of claim 1, wherein said
solving comprises selecting a license entitlement with a
smallest relative license consumption for each covered soft-
ware installation instance and strictest set of license con-
straints.

9. The article of manufacture of claim 1, wherein generat-
ing a license reconciliation plan comprises ranking all
licenses within each license type based on level of specificity.

10. The article of manufacture of claim 9, wherein the
method steps comprise:

analyzing a metric based on location.

11. The article of manufacture of claim 9, wherein the
method steps comprise:

analyzing a metric based on software version.

12. The article of manufacture of claim 1, wherein gener-
ating a reconciliation matrix for each cluster comprises
encoding a license requirement of each software installation
instance and/or set of software installation instances in a
canonical data format.

13. The article of manufacture of claim 1, wherein gener-
ating a reconciliation matrix for each cluster comprises
encoding available capacity information for each license in a
canonical data format.

14. The article of manufacture of claim 1, wherein gener-
ating a reconciliation matrix for each cluster comprises
encoding identification of each member of each set of soft-
ware installation instances in a canonical data format.

15. The article of manufacture of claim 1, wherein gener-
ating a reconciliation matrix for each cluster comprises
encoding identification of each license belonging to each of
one or more license types in a canonical data format.

16. A system for license reconciliation, comprising:

at least one distinct software module, each distinct soft-

ware module being embodied on a tangible computer-
readable medium;

a memory; and

at least one processor coupled to the memory and operative

for:

grouping a collection of multiple software installation
instances, a collection of multiple hardware devices
and a collection of multiple software licenses into
multiple clusters;

generating a reconciliation matrix for each cluster,
wherein each row in the reconciliation matrix repre-
sents a software installation instance or a hardware
device, each column in the reconciliation matrix rep-
resents a license type and/or an individual license, and
each cell in the reconciliation matrix represents a
license requirement and applicability of each soft-
ware installation instance or hardware device;

US 9,122,676 B2

11

solving each reconciliation matrix, wherein said solving
comprises determining (i) a performance value for
each reconciliation matrix and (ii) a price value for
each reconciliation matrix, wherein said performance
value indicates a number of covered software instal-
lation instances from the collection of multiple soft-
ware installation instances, and wherein said price
value indicates a relative quantity of consumed
licenses from the collection of multiple software
licenses; and

generating a license reconciliation plan based on the
solved reconciliation matrices, wherein said generat-

12

solving each reconciliation matrix, wherein said solving

comprises determining (i) a performance value for each
reconciliation matrix and (ii) a price value for each rec-
onciliation matrix, wherein said performance value indi-
cates a number of covered software installation
instances from the collection of multiple software instal-
lation instances, and wherein said price value indicates a
relative quantity of consumed licenses from the collec-
tion of multiple software licenses; and

generating a license reconciliation plan based on the solved

reconciliation matrices, wherein said generating the
license reconciliation plan comprises:

ing the license reconciliation plan comprises:
ranking each of the solved reconciliation matrices
based on a performance to price ratio, and wherein 15
said performance to price ratio is determined for
each solved reconciliation matrix based on said
determined (i) performance value and (ii) price
value for each reconciliation matrix; and
identifying the most cost-effective solved reconcilia- 20
tion matrix, based on said ranking, as the license
reconciliation plan.
17. The system of claim 16, wherein the collection of
multiple software licenses includes multiple capacity types

ranking each of the solved reconciliation matrices based
on a performance to price ratio, and wherein said
performance to price ratio is determined for each
solved reconciliation matrix based on said determined
(1) performance value and (ii) price value for each
reconciliation matrix; and

identifying the most cost-effective solved reconciliation
matrix, based on said ranking, as the license recon-
ciliation plan;
wherein at least one of the steps is carried out by a com-
puter device.

an(ism Xltlplehr e;t?ctllgns. Tiati h hod 23 19. The method of claim 18, wherein generating a recon-
18. A method for license reconcifiation, the metnod com- ciliation matrix for each cluster comprises:
prising:

encoding a license requirement of each software installa-
tion instance and/or set of software installation instances
in a canonical data format;

grouping a collection of multiple software installation
instances, a collection of multiple hardware devices and
a collection of multiple software licenses into multiple 30
clusters;

generating a reconciliation matrix for each cluster, wherein
each row in the reconciliation matrix represents a soft-
ware installation instance or a hardware device, each
column in the reconciliation matrix represents a license 35
type and/or an individual license, and each cell in the
reconciliation matrix represents a license requirement
and applicability of each software installation instance
or hardware device; ® ok ok ok

encoding available capacity information for each license in
a canonical data format;

encoding identification of each member of each set of
software installation instances in a canonical data for-
mat; and

encoding identification of each license belonging to each
of one or more license types in a canonical data format.

